Info Image

WBA, Deutsche Telekom, Cisco & Intel Unveils Wi-Fi 6/6E Features for Industry 4.0

WBA, Deutsche Telekom, Cisco & Intel Unveils Wi-Fi 6/6E Features for Industry 4.0 Image Credit: bunditinay/Bigstockphoto.com

The Wireless Broadband Alliance (WBA) has published Wi-Fi 6/6E for Industrial IoT: Enabling Wi-Fi Determinism in an IoT World

This paper explores how Wi-Fi’s latest features are ideal for meeting the demanding requirements for a wide variety of existing and emerging IIoT applications. This includes manufacturing/Industry 4.0 and logistics, involving autonomous mobile robots (AMRs), automated ground vehicles (AGVs), predictive maintenance and augmented/virtual/mixed reality (AR/VR/MR).

For example, manufacturers are increasingly using IIoT sensors for vibration, temperature and lubricant viscosity to catch emerging equipment problems before they result in extensive, expensive downtime. Other IIoT sensors provide real-time insights about production output, inventory levels and asset locations. Wireless has become the preferred way to network these sensors because it’s faster and cheaper to deploy than copper or fiber.

“As more equipment is monitored, wiring becomes prohibitive,” the paper says. “Industry is moving towards the inclusion of wireless technologies to lessen the cost of obtaining more information about their processes. In one recent case in the oil and gas industry, moving to a wireless installation resulted in a 75% cost reduction in installation.”

Produced by the WBA’s Wi-Fi 6/6E for IIOT work group, led by Cisco, Deutsche Telekom and Intel the white paper provides an overview of Wi-Fi 6 and 6E capabilities that are ideal for sensors and other IIoT applications, such as:

·       Scheduled access (SA) enabled by trigger-based (TB) uplink (UL) orthogonal frequency domain multiple access (OFDMA) in Wi-Fi 6 provides the ability to reduce or eliminate contention and bound latency (e.g. 99 percentile). This leads to increased levels of determinism applicable to all real-time and IIOT applications.

·       Wi-Fi 6 provides many deterministic QoS capabilities, such as the traffic prioritization that is a key component of Time-Sensitive Networking (TSN) for Industry 4.0 applications. Another example is Multi-link operation (MLO), a capability that helps provide high reliability for applications that cannot tolerate any packet loss.

·       The Fine Timing Measurement (FTM) protocol specified in IEEE 802.11-2016 enables both time-synchronization but also precise indoor range and position/location determination. This can be used for Autonomous Mobile Robots (AMR) and Automatic Guided Vehicles (AGV) applications such as route planning, exception handling and safety-related aspects including collision avoidance based on proximity. This capability does not require additional Wi-Fi infrastructure, so manufacturers can implement it immediately, for instance as part of their Industry 4.0 migration.

·       The target-wake-time (TWT) feature added to Wi-Fi 6 provides more efficient power-save and scheduling enhancement. This capability is a good fit for battery-powered IIoT nodes that need to transmit only infrequently, such as a sensor that uploads data only when a motor’s temperature exceeds a certain threshold.

·       Wi-Fi 6E supports up to 1.2 GHz of spectrum, making it ideal for use cases that require both multi-Gb/s throughput and determinism, such as industrial AR/VR/MR and sensor fusion.

The 52-page report also includes RF/network deployment guidelines for factory, warehouse, logistics and other use cases. For example, it provides recommendations for leveraging 802.11ax/Wi-Fi 6 scheduling capabilities to optimize traffic patterns and manage critical QoS requirements. Another example is using high-gain directional antennas to increase channel re-use rates and work around metal racks and other signal-attenuating features commonly found in warehouses.

Tiago Rodrigues, CEO of the Wireless Broadband Alliance
Wi-Fi has been a key enabler of the global IIOT market, which is on track to have a compound annual growth rate (CAGR) of about 23% between 2017 and 2023. Wi-Fi 6 and 6E are expanding capabilties by providing the multi-Gb/s data rates, additional spectrum, deterministic performance and other advanced capabilities necessary to support demanding applications such as Industry 4.0.

Author

Ray is a news editor at The Fast Mode, bringing with him more than 10 years of experience in the wireless industry.

For tips and feedback, email Ray at ray.sharma(at)thefastmode.com, or reach him on LinkedIn @raysharma10, Facebook @1RaySharma

PREVIOUS POST

A1 Telekom Austria Partners with Amdocs to Modernize its Digital Business Systems in Bulgaria

NEXT POST

Samsung Plans to Introduce 2G vRAN Solution