Samsung Develops On-Device AI Lightweight Technology

Samsung Develops On-Device AI Lightweight Technology Image Credit: Samsung

Samsung Advanced Institute of Technology (SAIT) this week announced that they have successfully developed On-Device AI lightweight technology that performs computations 8 times faster than the existing 32-bit deep learning data for servers.

By adjusting the data into groups of under 4 bits while maintaining accurate data recognition, this method of deep learning algorithm processing is simultaneously much faster and much more energy efficient than existing solutions.

Samsung’s new On-Device AI processing technology determines the intervals of the significant data that influence overall deep learning performance through ‘learning’. This ‘Quantization1 Interval Learning (QIL)’ retains data accuracy by re-organizing the data to be presented in bits smaller than their existing size. SAIT ran experiments that successfully demonstrated how the quantization of an in-server deep learning algorithm in 32 bit intervals provided higher accuracy than other existing solutions when computed into levels of less than 4 bits.

As this system therefore requires less hardware and less electricity, it can be mounted directly in-device at the place where the data for an image or fingerprint sensor is being obtained, ahead of transmitting the processed data on to the necessary end points.

On-Device AI technology can reduce the cost of cloud construction for AI operations since it operates on its own and provides quick and stable performance for use cases such as virtual reality and autonomous driving. Furthermore, On-Device AI technology can save personal biometric information used for device authentication, such as fingerprint, iris and face scans, onto mobile devices safely.

Chang-Kyu Choi, VP and Head of Computer Vision Lab, SAIT
Ultimately, in the future we will live in a world where all devices and sensor-based technologies are powered by AI. Samsung’s On-Device AI technologies are lower-power, higher-speed solutions for deep learning that will pave the way to this future. 

Ray is a news editor at The Fast Mode, bringing with him more than 10 years of experience in the wireless industry.

For tips and feedback, email Ray at ray.sharma(at)thefastmode.com, or reach him on LinkedIn @raysharma10, Facebook @1RaySharma

PREVIOUS POST

DT Launches Unlimited 5G Data Plans; Targets 300 5G Sites in 100 Locations by This Year

NEXT POST

Cell C Gives Away Free Mobile Phones, Data Bundles, Voice Bundles and Movie Vouchers as Daily Prizes

THE EDITOR'S DESK

UPCOMING EVENTS

Artelligence 2019

Network Virtualization and SDN Asia

Network Virtualization & SDN Americas

Mobile 360 Digital Societies 2019

TADSummit 2019

MWC Los Angeles 2019

The Digitrans Forum 2019

 

ON TWITTER

ON FACEBOOK