Telenor launches a new 5G pilot in Elverum and 10 collaborative 5G projects. In addition, the company hints that they are soon ready to announce which major city will be the first to be equipped with 5G in Norway.

Telenor has selected Elverum as its new testing site for the super network of the future. With promises of lightning fast speeds, minimal latency and a more reliable network, the residents of Elverum have much to look forward to. Telenor plans to place five 5G base stations in the river town before the summer, and there is no shortage of ambitions.

Elverum is a future-oriented municipality, where technology is a prioritised focus area. Thanks to 5G, the town will have access to use cases and services that have never before been available.

Telenor has a strategy of testing 5G in cooperation with multiple vendors. In Elverum, Ericsson will participate with 5G equipment and technical installation.

Telenor has also selected 10 5G projects in other locations around Norway where the mobile network of the future will be used to explore new opportunities in business.

Bjorn Moen, Acting CEO, Telenor Norway
We have great ambitions for 5G in Norway, and consider it natural to expand our investments gradually. On behalf of the mobile customers, we want to be the leader in terms of 5G, and we are now taking another step towards achieving that goal. Norway is the world’s most digitalised country, and we have a clear ambition to be a front runner in terms of 5G. 

Published in Technology & Solutions

Openwave Mobility claims that its technology has been deployed in 8 out of the 10 largest multi-territory mobile operator groups in the world and now has a footprint of over 2 billion subscribers.

This comes hot on the heels of a multi-million USD agreement for mobile traffic management with a leading network operator in North America to deploy mobile acceleration technology to boost subscriber Quality of Experience (QoE).

Currently, 60% of mobile data traffic is video, and estimates show that with 5G, this could rise to 90%. Encrypted protocols, such as QUIC from Google and 0-RTT from Facebook, are “darkening” networks and preventing operators from managing QoE. Openwave Mobility has a track record of delivering traffic management solutions that enable operators to manage secure video, deliver an outstanding video QoE and futureproof their networks to meet new encrypted protocols that over the top (OTT) players may launch.

Along with preparation for video on 5G, a growing number of operators worldwide are also deploying Openwave Mobility’s Stratum Cloud Data Manager (CDM) to manage 5G stateless clouds. 5G’s service-based architecture requires a data layer that can store diverse data sets and free them from proprietary vendor data stores. Stratum offers a proven common data layer with five nines reliability, freeing operators from vendor lock-in when procuring core network equipment.

John Giere, President and CEO, Openwave Mobility
Conventional mobile video management products apply static throttling that frustrates subscribers and adversely impacts QoE. Operators need to deploy dynamic traffic management techniques that take into account video QoE, application behavior and device characteristics. 

Published in Technology & Solutions

Aricent announced that it has been selected by Sichuan Tianyi Comheart based in China for its fully pre-integrated 5G RAN framework.

This is significant as it drastically cuts Network Equipment Providers’ (NEPs) time to introduce 5G RAN solutions. Aricent has outstanding expertise of delivering multi-mode RAN frameworks across a variety of different standards. This agreement comes hot on the heels of many other design wins across the world –making Aricent the de-facto vendor for 5G RAN frameworks. Aricent also offers customization services to help NEPs build and launch differentiated 5G RAN solutions. 

Aricent’s 5G RAN framework is fully compliant to 3GPP specifications and offers both Standalone (SA) and Non-Standalone (NSA) modes to support millimeter wave and sub-6 GHz frequencies for 5G use cases. What’s more, the software framework architecture has the flexibility to support all split options meeting 3GPP specifications. The software framework solution contains Layer 2 and Layer 3 capabilities which come pre-integrated with PHY from multiple vendors for interoperability. These capabilities give the Chinese OEM a significant advantage to meet 5G trial requirements from service providers in its country and across the world.   

Chinese carriers could spend close to $400 billion on 5G network infrastructure rollouts by 2020. China Mobile, China Telecom and China Unicom have all been conducting large scale 5G trials across a number of cities.  

N. Mohan Rangan, Chief Engineering Officer, Aricent
Having built a solid track record of delivering RAN frameworks for 3G and LTE, Aricent is pleased to be partnering and powering Sichuan Tianyi Comheart’s small cell program to create an industry leading solution for operators in China and abroad.

Shihong Li, CEO, Sichuan Tianyi Comheart Telecom
And given the variety of use cases and applications 5G will support, we needed a partner who has the expertise to develop reliable, robust and interoperable small cell solutions. 

Published in Technology & Solutions

Nokia's Nuage Networks VSP solution will be deployed by Bharti Airtel, India's leading telecommunications services provider, in 15 circles (service areas) in the northern and southern part of the country to automate its data center networks.

Once deployed, the Nuage Networks VSP solution will allow Airtel to provide new and exciting services, including Voice over LTE (VoLTE) and Mobile Edge Computing (MEC), ensuring customer delight. 

India has been recording unprecedented growth in data and this requires that service providers, like Airtel, increase the number of data centers. Further, they need to take the data centers closer to their subscribers to meet capacity demand and deliver best-in-class user experience. This is also driven by the need to prepare the networks for new technologies like 5G and Internet of Things (IoT).

Nuage Networks VSP is the critical component in Nokia's end-to-end Software Defined Networking (SDN) solution that enables automation across the data center and transport networks. It helps by adding agility and flexibility to networks, making them more responsive.

Randeep Sekhon, CTO, Bharti Airtel
The upcoming technologies, including 5G and IoT, demand that we move the data centers closer to our customers, so we are able to provide ultra-high speeds and extremely low latency. This is crucial for a number of new-age use cases such as Virtual Reality, autonomous driving and remote surgery.

Sanjay Malik, Head of India Market, Nokia
Nokia's Nuage Networks products and solutions have emerged as a clear leader in helping service providers in their journey to leverage virtualization and SDN for better operational efficiency and quality of experience.

Published in Technology & Solutions

Aricent has joined The Linux Foundation’s LF Edge project as a Premier Member.

LF Edge works to establish an open, interoperable framework for edge computing independent of hardware, silicon, cloud or operating system, to ultimately form a software edge that brings together the best of cloud, telecom, IoT and enterprise markets.

Aricent claims a track record of delivering robust edge server-less, data-plane and distributed workload management frameworks for several mobile operators. Through this new partnership, Aricent will work collaboratively to create common and open source architectures that allow developers to deliver the next generation of customer experiences.

Edge computing will be vital to realize the benefits of 5G mobile communications by distributing data and application processing closer to the point of consumption, thereby lowering latency and enhancing quality of service. More than 60 global organizations already are a part of LF Edge, working to advance a common, constructive edge network that drives better, more secure development for diverse and complex edge applications.

Through its work with LF Edge, Aricent will work to enrich the developer community with open frameworks that allow operators, industry and data center providers to leverage a globally interoperable, and simple edge compute platform.  

Aricent will contribute content and expertise in secure network virtualization, intelligent containerization and distributed workload management for edge networks.

Walid Negm, CTO, Aricent and Group Chief Innovation Officer, Altran
Multi-access edge will become the de facto architecture for the future of networks and compute, however the developer community does not want to grapple with propriety approaches. 

Arpit Jshipura, GM, Networkrking, Automation & Edge/IoT, Linux Foundation
LF Edge is set to advance the edge computing landscape by establishing a common framework for edge computing which will enable development across multiple segments, including enterprise, IoT, cloud, and telecom.

Published in Technology & Solutions

Ericsson and Telefónica, one of the world’s largest communications service providers, have penned a new four-to-six-year managed services deal for AI-powered Network Operations in the UK, Colombia, Peru, Ecuador and Uruguay.

Through its global Network Operations Centers (NOCs), Ericsson will provide services spanning day-to-day monitoring and service desk, change management, and problem and incident management - all powered by its leading AI and automation solutions. The deal supports and reinforces Telefónica’s strategy to focus on increased use of AI-based automation for evolved network operations.

Ericsson helps to create sustainable differentiation for its managed services customers by evolving from a focus on network-centric operations to user experience-centric operations, using automation and AI.

Juan Manuel Caro, Global Director of Operations & Customer Experience
Expanding our long-term partnership with Ericsson with the implementation and support of their global Network Operation Centers will now allow us to build a more agile network, while implementing new tools and developing technologies for the network and our customers. 

Arun Bansal, President and Head of Ericsson Europe and Latin America, Ericsson
Ericsson and Telefónica have a long-standing partnership in technology and services. This new deal reflects both our ambitions to develop and drive networks based in automation, machine learning and AI and we’re working closely with Telefónica to make this a reality.

Published in Technology & Solutions

LG Uplus, the South Korean mobile network operator and Elisa, the Finnish mobile network operator, have signed an MoU at the Mobile World Congress 2019 in Barcelona.

The cooperation between the two operators are mainly on joint development of AI powered automation that it will improve the way networks are being operated. It also covers cooperation in innovation, startup collaborations and service. Both LG Uplus and Elisa have high priorities for 5G services in their respective countries and will actively roll out 5G base stations during 2019. The MoU will help the mobile network operators work on ensuring high network quality for their customers and advance in the development of network automation for 4G and 5G. The parties will also cooperate to identify new business opportunities with international startups. Both LG Uplus and Elisa has experience from collaborating with startups to improve operation and serve customers. The MoU will support and benefit the companies and startups in their future collaborations.

Hyunhwoi Ha, Chairman of LG Group and CEO of LG Uplus
Elisa is the leading mobile data providers in Finland. We are impressed with their agile way of developing new services with startups and their network automation innovations. Working together with Elisa will help us operate our network more efficiently and benefit our customers.

Veli-Matti Mattila, CEO, Elisa
We believe that this partnership will help us and LG Uplus to develop and improve both 5G and existing network operations. We are also excited to work with LG Uplus on startup partnerships. This has been a success at Elisa and we believe working together will take startup collaborations one step further.

Published in Technology & Solutions

2019 is seen as the kick-off year for 5G, with many global operators quickly accelerating their investment in their infrastructure to support 5G use cases and services, offering great potential for both consumers and businesses. 5G represents a fundamental transformation of the role that wireless network technologies play in society, naturally evolving from 4G networks and offering advanced technological features such as increased data speeds, lower latencies and spectral efficiencies. Telco Operators can leverage the higher performance capabilities (of 5G) and enable new products and solutions for all their customers across traditional and non-traditional market segments, generating new revenue streams and profits. However, existing mobile network architectures were designed to provide and fulfil voice, multimedia and data requirements, which have proven to be an insufficiently inflexible platform due to complex interfaces and many 3GPP version upgrades. Knowing how networks have evolved will help us understand the present and plan for the future.

First Generation Networks (1G) introduced analog mobile voice services and established seamless wireless connectivity by licensing spectrum (installing base stations that provided subscribers access to mobile networks through exclusive usage of radio spectrum) and frequency reuse (multiple cell sites enabling a live connection to be transferred between cells during a voice call, without interference). Although 1G was revolutionary, analog transmissions had capacity limitations in terms of spectrum efficiency, together with limited scalability using analog devices (heavy, expensive, inefficient power).

Next came the GSM Standard (2G), evolving from analog to digital transmissions and enabling further capacity using TDMA methods, as well as supporting roaming between different networks. GSM provided a network platform to enable new mobile services (SMS, MMS, Picture messaging) and improved voice quality and clarity by digital coding. Scalability improved with digital devices since they are cheaper and lighter (digital signals consumer less battery power) than analog devices. GPRS (2.5G) was later introduced to support packet switched technology which ultimately provided data communications services including WAP, Email and World Wide Web access at a data rate of 56 kbit/s - 144 kbit/s.

After the turn of the new millennium we saw a rise in demand for mobile data services (gaming, video conferencing, large emails, video streaming) together with an increase in mobile subscriptions, and as such the Third Generation (3G) networks (implementing UMTS) ushered in a new era of high-speed internet access with transmissions speeds of 2Mbit/s, higher capacity and enhanced mobile broadband experiences. With the insatiable demand for higher internet speeds rising, Fourth Generation (4G) networks were introduced in 2010, aimed to deliver a faster and better mobile broadband experience with higher data capacity. The advantages were simply to increase the bandwidth and service offering from 3G whilst increasing efficiencies by reducing the cost-per-bit on the network. 4G benefits are accomplished technologically by implementing OFDMA, supporting wide channels and using signal coding and multiplexing schemas to provide higher data speeds (up to 100 Mb/s) to many users. A key differentiator of 4G over 3G is the implementation of an all-IP network, abandoning circuit switched infrastructure. Voice services together with data is transmitted over a packet switched network (voice calls replaced with IP telephony i.e. VoLTE).

Now we are at the cusp of the next generation network, with limited rollouts of 5G already happening in the US, and we will begin to see more comprehensive global rollouts in 2019-2020. 5G can become the key enabler for a wide range of new and innovative industry services and applications. However, satisfying new communications solutions requires meeting diverse and complex technological demands and it is important to review the actual technology requirements of 5G, compared with previous generations.

The golden triangle of 5G technology requirements are Latency, Connection Density and Throughput. To reach latency levels below 10ms will challenge the laws of physics and network layout topologies. Low latency is a fundamental requirement for business use cases that require communications which are instantaneous and ultra-reliable, such as remote surgical procedures and self-automated driving.

Moving onto Connection Density - 5G networks can provide up to a million connections per square kilometre (supporting a mass amount of concurrent connections to the network) compared with 4G which has a typical connection density of 2,000 connections per square kilometre. With the increase in popularity of IoT applications (i.e. Smart Wearable Technology, Smart Home Technology, Smart Cities, Smart Grids) the high connection density of 5G is a vital capability that will enable Mass-Machine Time Communication (M-MTC) use cases and satisfy the demands of a digital society.

The biggest advantage that we saw in the evolution from 3G to 4G was higher throughput, and moving forward with 5G this will also be a major factor. The aspiration for 5G is to deliver 10 Gbps throughput that will enable the uses cases for Enhanced Mobile Broadband (eMBB), providing an infrastructure platform for new services such as VR, AR and UHD.

Implementing and delivering on just the golden triangle described above will simply not cut it when it comes to delivering on the superior user experiences and the entirely new solutions that 5G promises. There are certain actions, techniques and business models that operators must embrace, this includes Spectral Efficiency - spectrum at higher frequencies with larger bandwidths will be required to provide the necessary capacity to support a very high number of connected devices and to enable higher speeds to concurrently connected devices. Spectral efficiency is imperative as operators begin running out of capacity on their networks. 5G will be introduced in higher frequency bands with many Operators expected to deploy their 5G systems in the mmW frequency band level. Radio Frequency (RF) spectrum is a limited natural resource, supporting the continuous growth of wireless technologies, systems and services. As the available amount of RF spectrum becomes saturated in high-density environments, new spectrum efficiency methods must be taken into considerations. Massive MIMO technology uses multiple antennas to transmit carrier signals simultaneously, performing both input and output functions within the same spectrum allocation, along with beamforming, which is a technique used to focus radio interfaces into a beam for directional signal transmission and reception, increasing overall RF spectrum efficiency can ultimately improving user experience.

Operators must also consider their NFV/SDN strategy and how to incorporate it into their Core and BSS/OSS Architecture. Network Functions Virtualization (NFV) is the migration of Physical Network Functions (PNF) into Virtualized Network Functions (VNF) and the Cloudification of application programs. Businesses and Telco Operators must transform their Core Network Functions (i.e. EPC, IMS, HSS) into Virtualized Network Functions, whereby service applications are deployed in Data Centers on cloud-based platforms. Software Defined Networking (SDN) is an extension to the Cloud Architecture and NFV, performing dynamic configuration of the network topology from a centralized software-based control pane, based upon load and demand (i.e. directing additional network capacity to where it is needed to maintain the quality of customer experience at peak data consumption times).

An ‘All Cloud’ strategy will provide a harmonized and co-ordinated architecture that can support agility, automation and intelligent closed-loop assurance on a single software-based network infrastructure, capable to manage diverse service requirements on virtualized network functions and supports elasticity on the network, which is delivered by Network Slicing - a function that enables dedicated and logical functional layers (slices) on top of a shared physical infrastructure, providing an end to end virtual network across multiple domains (Access, Transport, Core). The elasticity benefits of Network Slicing provide Telco Operators the opportunity to partition their network resources and host multiple different users, introducing Network Service/Slicing As A Service (NSaaS) business model that will offer a customized end to end wireless network as service, accommodating and managing the diverse range of 5G applications with differentiating transmission characteristics on a single shared infrastructure.

Finally we must consider Edge Computing, which is a technology requirement strongly linked to connected cars as it is function of processing application data closer to the users at the edge of the mobile network, enabling the network to deliver ultra-low latency for critical business use cases (i.e. self-driving car) or enhanced user experiences (i.e. AR/VR).

5G is coming our way in a hurry, however this next generation network will be different from the ones in the past. It is not simply about delivering on improved technology features to provide higher bandwidth to consumers. It is to change the traditional method of working for communication providers, enabling them to introduce entirely new eco-systems for new 5G uses cases to live, and the ones who embrace this change can become the key stakeholders in the value chain and will be the real winners in the 5G era.

Published in Expert Opinion
Page 1 of 20


MWC Shanghai 2019

Telco AI Summit Asia

Network Virtualization and SDN Asia

Network Virtualization & SDN Americas